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Lattice Gas Activity Series from
Secular Equations
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The secular equations for finite tori of lattice sites are obtained by computer
expansion of determinants for a hard-particle lattice gas. The secular equations
yield all of the thermodynamic functions for finite systems and the beginning
terms of activity expansions for all of the eigenvalues of the infinite system. The
same secular equation that yields the low-density series for the equation of state
of the infinite-circumference system also yields the beginning terms in the high-
density expansion. As examples we treat two hard-particle lattice gases in two
dimensions, the lattice gas with nearest-neighbor exclusion (which has a second-
order transition), and the case of dimers (which is analytic all the way to close
packing).

KEY WORDS: Dimer entropy; high- and low-density activity series; lattice
gases; second-order transitions; secular equations; symmetry-reduced transfer
matrices.

1. INTRODUCTION

The scaling of the behavior of finite systems to predict the behavior of
infinite systems is an important theme in modern statistical mechanics.!'
Here we treat finite strips of lattice gases and extract the beginning terms
in the activity series for the pressure for the infinite system. We have
previously explored this approach and have shown how to extract series
from transfer matrices.‘’ Here we give a different, simpler method, namely
the explicit generation of the secular equation for a finite strip of lattice gas.
We will show that one can obtain the beginning coefficients in the equation
of state of the infinite system in both the high- and low-density limits. In
addition, we can obtain all of the other eigenvalues as activity series. Given
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the explicit secular equation, one can also obtain all of the thermodynamic
properties without having to take numerical derivatives, the only numerical
task being the extraction of the largest eigenvalue. We begin by treating the
case of hard particles with nearest-neighbor exclusion on the plane-square
lattice. This system exhibits an order—disorder critical point (second-order
transition); at close packing the system must exist in one of two perfectly
ordered arrangements. We will also treat the case of dimers on the same
2D lattice. In this case there is no ordering transition as one approaches
close packing, and the limit of close packing is characterized by random
packing (with a characteristic entropy per particle).

Consider a lattice gas in two dimensions. The grand partition function
for an M x L strip of lattice sites (as illustrated for two alternate lattice
orientations in Fig. 1) with periodic boundary conditions in both directions
(producing a torus) is given exactly as the trace of a matrix product'*®

ELM)=TtWME =1+0Q,z+ 0,22+ - (1.1)

where W is the appropriate transfer matrix that correlates the states of a
given column of M sites with those of the neighboring column (or columns,
depending on the range of the interaction between the particles). For hard-
particle systems (the only interaction being excluded volume), which we
will restrict ourselves to here, W is a function of the activity z of the
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Fig. . Two different orientations of M x L lattice strips. In both, the square rectangle

encloses the sites of the general column and the letters (a-a and b-b) indicate the nature of
the periodic boundary conditions producing a torus. (A) The lattice axes are perpendicular to
the axis of the torus. (B) The lattice axes are tilted by 45° to the axis of the torus.
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(A) (B)
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Fig. 2. Illustration of the fact that four particles result in an interaction going around the
diameter of the torus in both lattice orientations (A) and (B) shown in Fig. 1. Since this inter-
action is impossible on the infinite square lattice, the two torii give the activity series of the
infinite system only through three terms.

particles and the circumference M of the torus; the Q, in (1.1) are the
number of ways of placing n particles on a lattice of M sites.
We can express = in terms of the eigenvalues 4 of the matrix W

5=Y At (1.2)
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Fig. 3. Sample low- and high-density particle configurations for the hard-particle lattice gas
with nearest-neighber exclusion. The solid dots indicate one sublattice in each case. (A) Low
density. Particles randomly occupy both sublattices with equal probability. (B) High density.
At close-packing, particles are exclusively on one of the two sublattices. As particles are
removed and pools of empty sites are formed, particles can “break off” from the main sublat-
tice and “float” out onto the other sublattice (illustrated by the shaded particles).
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where the number of eigenvalues o depends on the size of the matrix W,
which in turn depends on M, the circumference of the torus. In the limit
of large L, £ will depend only on A4,, the largest eigenvalue:

lim L-'InE=In 4, (1.3)

L— e

Now A, is the eigenvalue per column of sites (as defined in Fig. 1)
Defining the eigenvalue per lattice site as

=A™ (14)

then we have that (1.3) becomes

N-'lnE=In4, (1.5)

where N is the total number of lattice sites (analog of the volume)
N=MxL (1.6)

Since In &= pN/kT (where p is the pressure and 1/kT has the usual
meaning), one has

pkT=N"'lmEZ=Ind,= Y b,z (1.7)

n=1

where the sum is the standard Mayer activity expansion for the pressure.

Thus knowledge of A, (or equivalently, 1,) yields the equation of
state. It is well known'® that the coefficients b, in (1.7) obtained from a
matrix W{M) for a finite torus give (for the case of nearest-neighbor inter-
actions) the exact b, for the infinite system through n < (M —1) for the
arrangement in Fig. 1A and through n<(2M —1) for arrangement in
Fig. 1B (the coefficients are correct for n up to one minus the number of
particles required to go around the torus).

There are many techniques known*” for the calculation of the begin-
ning b, in (1.7) and hence for obtaining the activity expansion of A, (or
A,). Here we give a method for calculating the activity expansion of the
other eigenvalues. It is based on the fact that all of the eigenvalues can be
calculated as activity series if one knows the appropriate secular equation

|IW—A1]=0 (1.8)

where I is the identity matrix. As the circumference of the torus is
increased, W becomes very large and it is difficult to obtain (1.8) as an
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explicit finite polynomial in powers of A and z. For hard-particle systems
one can obtain the explicit form of (1.8) by using a computer to expand the
determinant. We will use this approach to obtain the secular equations for
the 2D lattice gas of hard particles with nearest-neighbor exclusion on the
square lattice. We will then examine the limiting form for the next largest
eigenvalue as M becomes large. The importance of knowledge of all of the
eigenvalues in determining the size dependence, the interfacial tension, and
the correlation length for the 2D Ising model is well known. 1%
Knowledge of the next largest eigenvalue is of interest since in the 2D Ising
model the critical point occurs when the largest eigenvalue and the next
largest eigenvalue become equal!¥’ (degeneracy of the largest eigenvalue).
We begin by reviewing the construction of the matrices W.

2. SYMMETRY-REDUCED TRANSFER MATRICES

As a specific example, we consider the 2D lattice gas with nearest-
neighbor exclusion on the square lattice. For the correlation of columns of
lattice sites with periodic boundary conditions (giving rings of sites) as
illustrated in Fig. 1A, Runnels and Combs‘® have discussed the construc-
tion of the matrices W in detail. The size of W as a function of M (the
number of lattice sites in a ring) is shown in Table I. Runnels and Combs
have shown that one need not consider all rotations of the various ring
configurations with respect to one another as separate matrix elements, but
rather a matrix element contains the sum of all possible rotations of one
member of the irreducible set or ring configurations with respect to another
member. This is the symmetry-reduced transfer matrix.

Table |. Matrix Size as a Function of Torus Circumference M for the Two
Lattice Orientations Shown in Fig. 1°

Orientation 4 Orientation B
n through which

M Matrix size b, is exact M Matrix size o(M)

4 Ix3 3 2 Ix3 2

6 5x5 5 3 4x4 3

8 8x8 7 4 6x6 4
10 14 x 14 9 b) 8x8 5
12 26 x 26 11 6 13x13 7
14 49 % 49 13 7 18x 18 9

“ The quantity (M) is the order of the minimum secular equation as discussed with respect
to Eq. (2.4).
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For the present model one can make a further reduction in matrix size
by tilting the square lattice by 45° and redefining the columns as shown in
Fig. 1B. In Fig. 1A, M particles are required to go around the torus, while
in Fig. 1B, 2M particles are required (even though the number of sites in
a volume is M). The size of W as a function of M for the tilted configura-
tion is also shown in Table I. The matrix sizes for the two orientations of
the lattice can be compared by observing the number of exact b, that can
be extracted from a given matrix (n=M — 1 for Fig. 1A and n=1M —1 for
Fig. 1B); this is shown in Table L.

As an example, consider the case of M =3 for the orientation in
Fig. 1B. The irreducible set of ring configurations has four members (a “1”
indicates an occupied lattice site, while a “0” an unoccupied site)

0 0 0 1
0 0 0 1 1 1 1 1 2.1)
(1) (2) (3) (4)
The 4 x4 matrix W is then
1 2 3 4
1/1 3z 322 23
211 z 0 0
W=l 0 0 0 (22)
4 \1 0 0 0

where the (i, j) element gives all rotations of ring j relative to ring i with
the number of z factors reflecting the number of particles in ring j. The
secular equation for this matrix is

A[A—(1+2) A — (2243242 A4+ (32 +:%]=0 (2.3)

One eigenvalue is zero and clearly all of the thermodynamic information
about the system is contained in the cubic equation in square brackets; we
will refer to the expression in brackets as the minimum secular equation.
For the present example one observes that the bottom two rows of the
matrix are identical and the matrix can be contracted to the following 3 x 3
matrix:

1 2 3/4
1 /1 3z 3:24 53

w=211 z 0 ' (2.4)
3/4 \1 0 0
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the secular equation of which is the cubic polynomial given in (2.3). The
order of the minimum secular equation (for the orientation of Fig. 1B) as
a function of M is shown in Table I; this is 6(M) as used in (1.2).

3. COMPUTER GENERATION OF SECULAR EQUATIONS

Given W(z) as constructed in the previous section, one obtains the
secular equation by expanding the determinant (1.8). This is easily accom-
plished using a computer. One programs the ¢! permutations and simply
collects the number of terms corresponding to i factors z and j factors A.
The secular equation is then the double, finite polynomial in z and 4

T 7,747 =0 (3.1
iJj

The coefficients y; ; are integers (not necessarily positive). One can alter-
natively write (3.1) in the form

i C(z)A°7"=0 (3.2)
n=90

where C,(z) are finite polynomials in the activity (these polynomials are
also functions of M).

For the lattice gas with nearest-neighbor exclusion on the square
lattice we have obtained the following explicit minimum secular equations
for M =2-7 (for the orientation in Fig.1B):

M=2:
AP—A— (2242 =0 (3.3a)

M=3:
A —(1+2)A2—(2z+322+2HY 4+ 322+ 24 =0 (3.3b)

M=4:

AP — (1 422) AP — (224622 4+ 522 +2*) A2+ (522 +8z* +22%) 4
+ (22°+42z427)=0 (3.3c)
M=5:
A= (143242 A =22+ 922+ 1223+ 62 + 25) A°
+ (723 4+ 262% +262° + 926+ 27) A

+ (=22 4925+ 152"+ 728 +22) A — (528 +102° 4+ 62'°+ ') =0
(3.3d)
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M=6:
AT —(1+4z4+322) A° — (22 + 1223+ 2323 +202% 4 82° + z%) A°
+ (923 +55z% + 1072° + 802° + 2627 + 32%) A*
+(—62z° — 82543527 4+ 7928 + 582° 4 18210 4+ 211y A3
— (227 4 422° + 1402° + 18820 4 1202' + 36212 4+ 421%) 42
— (8214 24z 4 162"
+ 13283 415244725 4+ 2% 4
+ (423 42424 + 41215 429294927 + 2'8) =0 (3.3¢)
M=T
A°— (1452462242 AP — (22 4+ 1522 + 3823+ 462* + 3023+ 926+ 27) A7
+ (1123 4+ 952* + 2882° + 3862° + 25328 + 8728 + 152° + z'°) 4°®
+ (=132 —762% — 11227 + 6228 4 2832° + 2612!°
+ 113z 24212 4 2213 49
— (27 + 8828 4 5862° + 1600z'° + 2268z'! + 1823212
+ 861213 423524 +3421% + 2-16) A4
+ (—z'°— 182" +662'% +3342" + 4252 + 182217
— 20214 —39z1" — 11218 —21%) A3
+ (242" +207z'% 4 8372"° + 17532'¢ 4+ 203027 + 1359z '8
+ 541217 + 12822 + 1728 4+ z2) 42
— (2z'% + 862" 4 334z'8 + 5382'° + 4602%°
+ 23422 + 7322 +132B 4+ 22 4
— (14z%° + 912" + 224222 4 27522 4+ 18422 + 6822 + 13224 22) =0

(3.3f)
4. ACTIVITY SERIES FOR THE EIGENVALUES
Writing the general 4, as an infinite series in the activity
Ap=Aop+ Az + Ayz*+ - 4.1

we obtain that the secular equation (3.2) is a recursion relation for the
coefficients 4 for the o eigenvalues. For the polynomials (3.3) the recur-
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sion process begins in general (for all M) as follows. The o 4, are given
as solutions of

Au” HAx—1)=0 (4.2)
One solution is Aq, =1, while there are o0 — 1 solutions 4, =0. For the
o — 1 solutions with A4, =0 one finds

A’ HAR+2)=0 (4.3)
There is one solution 4,, = —2 and ¢ — 2 other solutions 4,, =0.

For the other A, one finds more complicated polynomials. For
example, for 4, = 4,, =0 the equations for 4,, are

(M=4) —243, +5454+2=0
(M=5)  Ay(—242% +745,—1)=0 (4.4)

(M =6) A3 (=245, +94%, —64,,—2)=0
(M=17) A3 (=243, + 1143, — 134, —1)=0
For the case of Ay, = A4, = A4, =0, the equations for 4, are
(M=5) ~Ay—5=0
(M=6) ~24%, — 843, +4=0 (4.5)
(M=1) Ay(— A3, — A2 +244,,-2)=0

Finally, for Ag, =A4,, = A, = A3, =0 one has for 4,,
(M=1) —A,—14=0 (4.6)

From (4.2) one sees that one eigenvalue (the largest) begins with
Ay, =1; all the rest have 44, =0 and thus the series for most of the eigen-
values begins with some integer power of the activity (and hence all the
eigenvalues except the first go to zero as z — 0).
As an example, the beginning terms in the eigenvalues for M =2 and
M=3 are
Ay=1422-3224+ ...

(M=2) 47
Ay= —2z+432%+ ... “7

Ay=1+3z2-3z2+ ...
(M=3) A= —2z+1§z%+ ... (4.8)
A3= 1%22'*'"'
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For M =7 there are nine eigenvalues that have the following beginning
form:
Ay =1+A,z+4 -

AZ': A212+...

A3= A3222+...

A4= A4222+...

A5= A52zz+ (49)
A6= A6323+~"

A7= A73Z3+---

A8= A8323+"'

A9= A94z4+...

5. THE LARGEST EIGENVALUE

From (1.7) we have

A,=exp[ Y b,,z":|=l+ Y a,z" (5.1

n=1 n=1

As we have seen in the previous section, only the expansion for the largest
eigenvalue begins with one. For n<2M —1 the coefficients b, (or alter-
natively the a,) in (5.1) are independent of M and are the exact coefficients
for an infinite lattice. Thus from the secular equation for M =7 for the
model of nearest-neighbor exclusion on the square lattice [see (3.3)] one
obtains the exact b, for the infinite lattice through n=13. The values so
obtained are shown in Table II. The &, for this model are known” through
n=15 as a by-product of the series for the 2D Ising model, and the values
given in Table II agree with these numbers.

As an illustration of the fact that one gets the b, exact for n<2M —1,
we give the first four n, for M =2 (in this case we can solve the quadratic
secular equation and obtains the series as an expansion of the square-root
term):

pkT=2z—2322 410423 —503z2% + - (5.2)
2 3 4

which on comparison with Table II is correct through b;, but b, is slightly
different.

Given the expansion for 4, using (1.4) and (5.1), it is not possible to
work backward and construct the secular equation. That is, the secular
equation contains much more information than just the coefficients b,,.
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Table ll. The Coefficients b, for the 2D
Lattice Gas with Nearest-Neighbor Exclusion
on the Square Lattice as Obtained from
the Secular Equation (3.3f) for M=7°

=

bn

]
—2(12)
10(1/3)
—52(1/4)
295(1/5)
—1789(5/6)
11,397(1/7)
~175,238(1/8)
510,609(4/9)
10 —3,541,971
i} 25,009,987
12 —~179,211,452(11/12)
13 1,300,139,553(1/13)

D 00~ N AW —

“ The coefficients are exact for the infinite lattice.

6. HIGH-DENSITY SERIES

On a strip with M x L sites for the present model with nearest-
neighbor exclusion one can place a maximum of (M x L)/2 particles (every
other site occupied). At the close-packed density the grand partition
function is

Z= M2 = N2 (6.1)

Taking the limit of close-packed density of (6.1) as a reference, one can
construct = as a series in inverse powers of z, a factor z 7! reflecting the
removal of a particle to produce a hole. One has [compare (1.1), which
gives an expansion about the low-density limit]

=exp <£—I;)=2N/2|:1+Q', (%)+Q’z <§)2+ :| (6.2)

where the Q) are the combinatorial factors giving the number of
arrangements of N/2 —n particles on a lattice of N sites. For finite N the
quantities Q) ih (6.2) are finite numbers. Forming p/kT from (6.2), one
finds

)

p 1.1 _ /1N 1 [ A _
2 lm:-lo <;)+N[Q2—§(Q1)2]<;) +o=f) (63)
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Whether or not the series expansion of f{z) in inverse integer powers of z
exists depends on whether or not the limits such as

Nlim (1/N) Q) (6.4)

are finite. If the quantity in (6.4) is not finite, then f(z) is not analytic in
(1/z) about 1/z =0 (the close-packed limit). For hard-particle lattice gases
in one dimension, Lee and Yang!'® have given the general form of @, for
a particle that spans m lattice sites:

(N—mn+n)!
= 6.5
O (N—=mn)! n! (6.5)
For the simplest case of m=1 [independent particles: Z=(1+4+2z)"=

1+Nz+ ---] we have

Q=N (6.6)

and Q)/N =1 and hence the series is analytic in 1/z. For m =2 (the case of
nearest-neighbor exclusion in 1D) one has

Q'1=Z+? (6.7)

In this case Q}/N is not finite as N —» oo and hence f(z) is not analytic in
1/z.

One can see what is going on in the above case by examining the
secular equation for the case of M =1 in (3.3). To construct the high-den-
sity version of p/kT from the secular equations we recall that the eigenvalue
is for a column of M sites (see Fig. 1B). To alter the secular equation to
give a series relative to the close-packed limit of {6.1), we introduce the
following scaled variable (at close-packing every other column will be
occupied; hence there is an average of M/2 particles per column)

Ay=z"M24, (6.8)
In the limit of large L, = is given in terms of the largest eigenvalue A:

E =M (At (6.9)
where

Ay=Ag+ A, 27" P+ A1 z27 + Ayz7 2+ 4,272+ - (6.10)
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where we have indicated that it is possible that fractional inverse powers of
z might arise. For the current model one has 4, =1 in all cases (this is not
so for the case of dimers treated in Section 10).

The equation of state can then be written as''®

p/kT=3inz+ M~ "'In A,

=ilnz+ Y bz7"+ Y ¢,z (6.11)

n=1 n=1

where we have separately grouped the terms involving inverse integer
multiples of z and those involving the square root of z. It is known*'®)
that in the limit M — oo the function f(z) of (6.3) is analytic in 1/z, and
hence in the limit of large M the coeflicients ¢, of (6.11) must go to zero.

For M odd, there will be square-root terms. The origin of the square-
root terms for finite M is that when one has a torus, removal of M particles
from a column can result in major rearrangements of the lattice (for
example, movement of all the particles to the other sublattice), rearrange-
ments that are impossible in the limit of M — co. This is illustrated by
returning to the case of M =1. From (3.3) with the definition of (6.8) one
finds

Ay=dz7 M+ iz Y P=141z72 4 (6.12)
giving
pkT=4Inz+5z"172400z""+ ... (6.13)
We illustrate below the high-density activity series for M =1 through
M =7. We give the series up to the first term that departs from the series

for the infinite system. The exact series for the infinite system, as obtained
by other means,'*!® is shown for comparison.

(M=1) p/kT=4lnz+1z""2+ ...

(M=2) p/kT=4lnz+ +3z70 4.

{M=3) p/kT=3ilnz+ +iz7 4427+

(M=4) p/kT=1ilnz+ +iz7'+ -tz (6.14)
(M=5) p/kT=ilnz+ +iz7'+ —dz P Gz

(M=6) p/kT=!'lnz+ +iz7'+ -4z +3z7%+

(M=T) pkT=ilnz+ +iz 7+ —iz7%+ +3z 70+ 2+
(M=) p/kT=iln:z+ +iz7'+ —§z77+ +3:7%+
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One notes that the terms involving the square root of z in the odd terms
has the form as a function of M as follows:

1 —-M/2
i (6.15)

50 the coefficient goes to zero at large M and the position of the term in
the series also moves out to infinity.

From (6.14) one sees that the equations of state for finite tori slowly
converge to the equation of state for the infinite-circumference system.

7. THE GENERAL FORM OF THE SECULAR
EQUATION

We divide both sides of (3.2) by 4° and obtain
Y CAM,z)/A"=1 (7.1)
n=1

Using the secular equations given in (3.3), one has enough information to
write the beginning terms of (7.1) as general functions of M. One finds the
following general forms (valid for M >4):

Ci=1+(M=2)z+(6—-33M+iM*) 2+
C,=2z+3(M-2)22+ (17— 1IM+2M*) 2* + --.
Ci=(3-2M) 2>+ (—46+311M -5 M%) z* +
Ci=(6—6M+M?)z°+ ...

(7.2)

Using the general expansion of A, given in (4.1), one obtains the
following general expansions for 4, and A,:

Ay=1+Mz—(2AM—iM*) 22+ ...

(7.3)
Ay==2z[1-(33—M)z+(19%—6iM+1M*) 2 +
We define
A, =exp(MT,)
(7.4)
A= —2zexp(MT,)
Then one finds
r=z-2z24+ ...
(7.5)

Fy=(z=-2z2+ .. )+ M~ (=33 + 12822+ ...)
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One notes that I'; is independent of M and that I, has the following
specific M dependence:

r=r,+M'y, (7.6)
where
y2= =33+ 1282+ - (1.7)
From (7.6) one has
Mli_r’nm r=r, (7.8)

One obtains the quantities I", and y, independent of M for the infinite
system.

8. CALCULATION OF THERMODYNAMIC FUNCTIONS

Given the secular equation for an M x L torus, one can evaluate
exactly all of the thermodynamic functions in the limit L — co, the only
numerical task being the calculation of A,, the largest eigenvalue (i.e., one
must obtain the largest root of the secular equation). For convenience we
write the secular equation (3.2) in the form

[

Y c,(z) A" =0 (8.1)

n=0
where
Cd—ll=cll (8'2)

We numerically calculate the largest root, 4,, of (8.1). Then by implicit
differentiation of (8.)) we obtain the following relations for the derivatives
of A,. We define

Sy=Y, cpd] Ss=Y n(n—1)c, 4772
Sy=Y nc,Ay~! Se=Y, ey A}
Sy=) cp A} S;=Y neg A7 (8.3)

S,=Y nc, A7} Sg=Y n(n—1)c, 4772

So=Y n(n—1)n=2)c, 477>

822/77/3-4-19
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where the prime indicates differentiation with respect to =. The first three
derivatives of A with respect to - are then given by

o4, _ _ S
= S,
2’4, S;+28,+ S
=2 4
oz2 S, (84)
*A, 38,435+ Ss+35;4+35:+ S,
P S,

The pressure, the density p, the isothermal compressibility K,
modified compressibility X, and the derivative of X are then obtained using
standard thermodynamic relations:

P

P _
T M~'In4,
_0(p/kT) _ ., _,
p= Oln: =M~'D,
ldp X
"oy KTy )
o _ 2 -1
—alnﬁ—(p—MpHM D,
1), 4 )

where

22\ 94,
D2—<A—I> 5 (8.6)

Figure 4 shows the modified compressibility X as a function of p for
various values of M calculated using the secular equations (3.3) for the
model of nearest-neighbor exclusion and the procedure outlined above. For
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Fig. 4. The modified compressibility X as a function of density for M x oo lattice strips. The

compressibility is calculated using the exact secular equations of (3.3) and the appropriate
relation given in (8.5). The numbers 2-7 refer to the M values for the 2D lattice gas with
nearest-neighbor exclusion. The number 1 refers to the 1D lattice gas with nearest-neighbor

exclusion; the secular equation for this system is given in (8.7). As M — oo the maximum in
X develops into the singularity of (8.8) at approximately p.=0.37.

comparison we also show X(p) for the 1D lattice gas with nearest-neighbor
exclusion. The secular equation for the 1D model is

A*—A4—z=0 (8.7)
As shown previously by Runnels and Combs,'®’ as M is increased, a sharp
maximum in X develops near p.=0.37. In the limit M — oo, X has a
singularity of the form!'%!”

X~ —ln(p—p,) (8.8)

This is a second-order transition that reflects the sublattice ordering that
begins to set in at p_ as the density is increased.

799
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9. THE RATIO A /A,

We can factor out the largest eigenvalue in (1.2) and obtain

=— AL é -
H_A,[1+<Al> +] (9.1)

We use the general M dependence for 4, and A, given in (7.3) and (74)
and find that the ratio of the eigenvalues is independent of M

Apfdy = —22(1 =332 +19%22+ )= ¥ «,z" (9.2)

One finds that one obtains the «, for the infinite system through n< M —1;
this is illustrated in Table III. As discussed in the Introduction, the quan-
tity L must be even. Thus even though, as seen from (9.2), the ratio of
the eigenvalues is negative, it will be raised to an even power. Thus we
introduce the positive quantity

r=—A,/A4, (9.3)

Using the secular equation for M =7 of (3.3f), we thus can calculate the
exact «, for the infinite system through n=6. The series is (we quote the
fractions to four significant figures)

r=2z(1—33z419%z*— 114.9062z* + 731.4180z* — 4882.9586° + ---)
(M=17) (9.4)

The ratios of successive coefficients in (9.4) extrapolate smoothly to

Table Ill. The Coefficients in the Activity Expansion of A,/A, as a Function
of M, the Circumference of the Lattice Torus®

n M=2 M=3 M=4 M=5 M=6 M=7

1 1 1 1 1 1 1

2 -35 —=3.75 —3.75 =375 —3.75 =375

3 16 19(5/16) 19(7/16) 19(7/16) 19(7/16) 19(7/16)
4 —111.8125  —114.843 —114.906 —114906 —114.906
5 729.293 731.387 731418 731.418
6 —4889.443 -4882.959

2 The quantities shown are the coefficients «,, of (9.2) divided by minus two. The underlined
numbers are the limiting values for the infinite system.
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z= —0.12, which is also*'®’ the radius of convergence of the pressure series
(1.7).
We can express (9.3) as a density series using the expansion‘'®’

p=z—5z2431z>—209z% + 14762° — 10739z + - -- (9.5)

We obtain

r=2p+2ip*>+13p*—11875p% — 79141p° — 14.1484p% + ... (9.6)
Both (9.4) and (9.6) give well-behaved series if they are inverted:

z=1r4 15y 4 (1.085938) r* + (0.8828092) r* + (0.4949532) r®
+(0.1255641) r® + .- (9.7)

p=14r—3r?4(0.2734375) r* — (0.2070313) r* + (0.1737067) r*
—(0.165576) r¢ + --- (9.8)

At r=1, (3/4) and (4/3) Padé approximants give z=3.74 and z =3.42. At
r=1, (3/4) and (4/3) approximants give p=0.349 and p=0.346. These
compare with the phase transition quantities''>'* of z=3.75 and p =0.37.

10. DIMERS; SUMMARY

The combinatorics of placing dimers on a lattice is a classic problem
in statistical mechanics; we consider the case of the plane-square lattice
wrapped into an M x L torus as illustrated in Fig. 1B. The placing of a
dimer on the torus is illustrated in Fig. 5A; each dimer has two possible
orientations as illustrated in Fig. 5B. The construction of the truncated
matrix for M =2 is illustrated in Fig. 5C. Proceeding as before, we obtain
the secular equations for M=1to M =5:

(M=1) A*—A—2:=0
(M=2) A*—(1+22)A*—(2z+22%) A +42°=0
(M=3) A*—(1+44z)A>— (224922 +82%) A2+ (62> +82*) 4 +122°=0
(M=4) AS=(1+6z+4z%) A° — (22 + 1622 +322° + 82%) 4*
+ (823 + 50z* + 882° + 402%) A% — (42° + 4z°) A2
—(162° +242° + 642'°) 4 +32:'2=0 (10.1)
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(M=5) A —(1+8z+412:2) A7 — (22 + 2322+ 8023 +90z* 4 322°) 48
+ (1023 + 1152% + 4302° 4+ 57226 + 18427) A°
+(—10z°— 766 — 160z7 + 105z + 576z° + 280-'°) A*
—(60z% 4 4462° + 134020 + 1672z 4+ 7202'2) A?
— (402" +100z'2 + 320z + 329z + 640:z'°) A2
+(200z'% 4 3202'¢ 4+ 800='") A4 + 400z =0

As with the case of particles with nearest-neighbor exclusion
considered previously, the number of dimers at close-packing is N/2 (where
N =M x L is the total number of lattice sites). Unlike the previous problem
where all of the particles must exist on one sublattice (illustrated in Fig. 3),
there are many ways to arrange the dimers at close-packing (illustrated in
Fig. 6A). If @ is the number of arrangements of N/2 dimers on N sites at
close-packing, one has for large N

O =¢N? (10.2)

(A) (B)

1 4z 222
=]
[ 4 LN 1 2z 0
o0

(©)

Fig. 5. Lattice gas of dimers. (A) The placement of a dimer on a lattice strip of type (B)
illustrated in Fig. 1. (B) The two possible orientations of a dimer. (C) The transfer matrix for
dimers for a lattice strip with M =2. The configurations illustrate the possible states of a
column of two sites (a column as in Fig. 1B). The matrix elements are the contribution of
column i+ 1 to the grand partition function.
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where ¢ is the freedom per dimer at close-packing (one has ¢ =2 as N — 0).
The quantity ¢ is known exactly!®'®’ and to five figures is given by

$=1.7916 (10.3)

It is known exactly that there is no singularity from zero to close-packed
density.

The low-density activity series is known'?" through 15 terms; the
series is also known®? through 9 terms for the case of interacting dimers
on the plane-square lattice. The secular equation for M =35 gives the low-
density activity series through n=9 (2M — 1) for the case of tori of infinite
circumference. We note that the equilibrium activity series can also be used
to treat the kinetics of the adsorption of dimers onto a 2D lattice.”®® The
high-density activity series is of most interest and we turn to that now. We
can write the grand partition function as a series in inverse powers of =
relative to the close-packed state as follows [in analogy with (6.2)]:

@ @ N2
5=(:)”/2[<2>+(Z Y r,.,):—'+~..] (10.4)
i=1 i=1j=1

The sum over i represents the sum over each of the & configurations of
dimers at close-packing (as illustrated in Fig. 6A). For each of the i
configurations we remove each of the N/2 dimers one at a time {the sum

I
I
I
I

I ]
I

(A) IHHH

—e o—o
(B)IIHHH

Fig. 6. (A) Close-packing of dimers on the plane-square lattice. There is no preferred orien-
tation or sublattice structure. (B) The configuration shown in (A) with one dimer missing
(dotted line). The arrows indicate a possible rearrangement of the remaining dimers made
possible by the vacancy.



804 Poland

over j), giving a close-packed configuration with one dimer removed
(illustrated in Fig. 6B). The quantity I'; is the number of ways that one can
rearrange the remaining particles when the jth particle is removed from the
ith configuration. The factor z~' indicates that one particle has been
removed. Introducing the average I';

(M=% Y IjY X (10.5)

® N2 /¢ N2
i=1j=1 i=1j=1

one has [using (10.2) for @]

N
E=(:¢)”/2[1+5<1‘> 27ty :I (10.6)
The equation of state is then
p 1 1 1 .
—_— = z — - jod R 7
T 2ln +2ln¢+2<F> + (10.7)

As discussed in Section 6, if {(I") — o0 as N — oo, then p/kT —In z/2 is not
analytic about z=' =0,

Our secular equations in (10.1) give us the following beginning terms
for the equation of state of (10.7) for M=1 to M =5:

(M=1) p/kT=05Inz+ 034657 +0.353552""2400z""+ .-

(M=2) p/kT=05Inz40.34657+00z""2415-"'4 ...

(M=3) p/kT=05Inz+029863+0.27217z""24+0.51389-""'+ ... (10.8)
(M=4) p/kT=05Inz+0.30699+0.0z""24+2.72084z""'+ ...

(M=5) p/kT=05Inz+0.29415+ 0.24060z'2 + 0.83766z"' + ...

First we note that there is an alteration in the character of the results
between M odd and M even. The constant term should be asympototic to
the value

$1n ¢ =11In(1.7916) = 0.29155 (10.9)

and one sees that this is so.

The question of interest is whether as M — oo the coefficients of z~'/2
for M odd go to zero and whether simultaneously the coefficients of z = for
M odd and M even approach the same finite limit. If this is so, then p/kT
is analytic about the close-packed state in powers of z~'. It is not
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impossible that this is so, but we clearly do not have enough data
(M values) to support this interpretation.

It is of interest to calculate the entropy as a function of density from
zero up to close-packing. We have the basic relation

E=AV=Q(n* N)z" (10.10)

where N is the total number of sites (N =M x L), A is the largest eigenvalue
per site (=A}™), and n* is the number of particles on the lattice that
corresponds to the maximum term in = (the particle density is given by
p=n*/N). Using (10.10), one obtains

lNln[.?:ln,l—plnz:lnw (10.11)

We obtain A as the largest root of the secular equation and p from the
appropriate derivative as outlined in Section 8. The quantity In & defined
in (10.11) is shown in Fig. 7 as a function of density for M =1 and M =5.
In the limit z — oo one has p — 1/2 and

Q- M2 (10.12)
giving
lim nw=4%In¢ (10.13)

p—~

For the case of M =5 this limit is very close to the value for the infinite
system.

0.6 -

In @ M=5
0.4 -

Fig. 7. The configurational entropy per lattice site S/Nk) for the dimer model as a function
of density p for finite tori with M =1 and M =5. The close-packing limit for the case of M =5
is indistinguishable on the scale shown from the value for the case of M = co.
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In summary, we have shown that we can obtain the secular equations
for lattice gas models on tori of finite circumference by computer expansion
of the appropriate determinants constructed from symmetry-reduced
matrices. The secular equations for finite tori yield the exact beginning
coefficients in various thermodynamic series for the infinite system. The
number of coeflicients that can be obtained in this manner depends on the
details of the system treated. In our example of the hard-particle lattice gas
we easily obtained the first 13 exact vitial coefficients. The computer time
required to expand the secular determinant goes up very fast with the size
of the matrix and hence the number of coefficients that can be obtained in
this manner in a reasonable amount of time is in the range of 15-18. In
addition to giving a set of exact coefficients for low-and high-density
expansions, the secular equation gives the exact thermodynamic behavior
for the finite system.

REFERENCES

1. V. Privman, ed., Finite-Size Scaling and Numerical Simulation of Statistical Systems
(World Scientific, Singapore, 1990).

. C. Borgs and J. Z. Imbrie, J. Stat. Phys. 69:487 (1992).

J-K. Kim, Phys. Rev. Lert. 70:1735 (1993).

M. W. Springgate and D. Poland, J. Chem. Phys. 62:680 (1975).

. T. L. Hill, Statistical Mechanics (McGraw-Hill, New York, 1956), Chapter 7.

. L. K. Runnels and L. L. Combs, J. Chem. Phys. 45:2482 (1966).

. M. F. Sykes, D.S. Gaunt, S. R. Mattingly, J. W. Essam, and C. J. Elliot, J. Math. Phys.
14:1066 (1973).

. M. E. Fisher, J. Phys. Soc. Japan (Suppl.) 26:87 (1969).

9. A. E. Ferdinand and M. E. Fisher, Phys. Rev. 185:832 (1969).

10. R. J. Baxter, Exactly Solved Models in Statistical Mechanics (Academic Press, 1982).

Chapter 7.

11. V. Privman and M. E. Fisher, J. Star. Phys. 33:385 (1983).

12. C. Borgs and J. Z. Imbrie, Commun. Math. Phys. 145:235 (1992).

13. C. Borgs and R. Kotecky, Physica A 194:128 (1993).

14. L. Onsager, Phys. Rev. 65:117 (1944).

15. T. D. Lee and C. N. Yang, Phys. Rev. 87:410 (1952).

16. D. S. Gaunt and M. E. Fisher, J. Chem. Phys. 43:2480 (1965).

17. M. W. Springgate and D. Poland, Phys. Rev. 4 20:1267 (1979).

18. M. E. Fisher, Phys. Rev. 124:1664 (1961).

- VR NS N}

oo

19. P. W. Kastelyn, Physica 27:1209 (1961).

20. O. J. Heilmann and E. H. Lieb, Phys. Rev. Lert. 24:1412 (1970).
21. D. S. Gaunt, Phys. Rev. 179:174 (1969).

22. D. Poland and P. K. Swaminathan, J. Chem. Phys. 69:3660 (1978).
23. D. Poland, Langmuir 7:514 (1991).



