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The secular equations for finite tori of lattice sites are obtained by computer 
expansion of determinants for a hard-particle lattice gas. The secular equations 
yield all of the thermodynamic functions for finite systems and the beginning 
terms of activity expansions for all of the eigenvalues of the infinite system. The 
same secular equation that yields the low-density series for the equation of state 
of the infinite-circumference system also yields the beginning terms in the high- 
density expansion. As examples we treat two hard-particle lattice gases in two 
dimensions, the lattice gas with nearest-neighbor exclusion (which has a second- 
order transition), and the case of dimers (which is analytic all the way to close 
packing). 

KEY WORDS: Dimer entropy; high- and low-density activity series; lattice 
gases; second-order transitions; secular equations; symmetry-reduced transfer 
matrices. 

1. INTRODUCTION 

The scaling of the behavior of finite systems to predict the behavior of 
infinite systems is an important theme in modern statistical mechanics, tt-3~ 
Here we treat finite strips of lattice gases and extract the beginning terms 
in the activity series for the pressure for the infinite system. We have 
previously explored this approach and have shown how to extract series 
from transfer matrices. 14~ Here we give a different, simpler method, namely 
the explicit generation of the secular equation for a finite strip of lattice gas. 
We will show that one can obtain the beginning coefficients in the equation 
of state of the infinite system in both the high- and low-density limits. In 
addition, we carl obtain all of the other eigenvalues as activity series. Given 
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the explicit secular equation, one can also obtain all of the thermodynamic 
properties without having to take numerical derivatives, the only numerical 
task being the extraction of the largest eigenvalue. We begin by treating the 
case of hard particles with nearest-neighbor exclusion on the plane-square 
lattice. This system exhibits an order-disorder critical point (second-order 
transition); at close packing the system must exist in one of two perfectly 
ordered arrangements. We will also treat the case of dimers on the same 
2D lattice. In this case there is no ordering transition as one approaches 
close packing, and the limit of close packing is characterized by random 
packing (with a characteristic entropy per particle). 

Consider a lattice gas in two dimensions. The grand partition function 
for an M x L strip of lattice sites (as illustrated for two alternate lattice 
orientations in Fig. 1 ) with periodic boundary conditions in both directions 
(producing a torus) is given exactly as the trace of a matrix product (4-6) 

-~(L, M ) = T r  W(M)L= 1 + Q l z +  Q2z 2+ .. .  (1.1) 

where W is the appropriate transfer matrix that correlates the states of a 
given column of M sites with those of the neighboring column (or columns, 
depending on the range of the interaction between the particles). For hard- 
particle systems (the only interaction being excluded volume), which we 
will restrict ourselves to here, W is a function of the activity z of the 
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Fig. I. Two different orientations of Mx L lattice strips. In both, the square rectangle 
encloses the sites of the general colum~ and the letters (a-a and B-b) indicate the nature of 
the periodic boundary conditions producing a tox~s. (A) The lattice axes are perpendicular to 
the axis of the torus. (B) The lattice axes are tilted by 45 ~ to the axis of the torus. 
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Fig. 2. lllustration of the fact that four particles result in an interaction going around the 
diameter of the torus in both lattice orientations (A) and (B) shown in Fig. 1. Since this inter- 
action is impossible on the infinite square lattice, the two torii give the activity series of the 
infinite system only through three terms. 

particles and the circumference M of the torus; the Qn in (1.1) are the 
number of ways of placing n particles on a lattice of  M sites. 

We can express S in terms of the eigenvalues A of the matrix W 

._,=-- ~ A~. (1 .2)  
k = l  
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Fig. 3. Sample low- and high-density particle configurations for the hard-particle lattice gas 
with nearest-neighbor exclusion. The solid dots indicate one sublattire in each case. (A) Low 
density. Particles randomly occupy both sublattires with equal probability. (B) High density. 
At close-packing, particles are exclusively on one of the two sublattices. As particles are 
removed and pools of empty sites are formed, particles can "break off" from the main sublat- 
tire and "float" out onto the other sublattice (illustrated by the shaded particles). 
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where the number of eigenvalues tr depends on the size of the matrix W, 
which in turn depends on M, the circumference of the torus. In the limit 
of large L, Z, will depend only on A~, the largest eigenvalue: 

lim L -1 ln_==ln A] (1.3) 
L ~  

Now A~ is the eigenvalue per column of sites (as defined in Fig. 1). 
Defining the eigenvalue per lattice site as 

21 =At  I/'w (1.4) 

then we have that (1.3) becomes 

N - l  In S = l n  21 (1.5) 

where N is the total number of lattice sites (analog of the volume) 

N = M x L  (1.6) 

Since In S = p N / k T  (where p is the pressure and 1/kT has the usual 
meaning), one has 

p / k T = N  -I I n S = I n 2 1  = ~. b,,z" (1.7) 
n = l  

where the sum is the standard Mayer activity expansion for the pressure. 
Thus knowledge of A~ (or equivalently, 2~) yields the equation of 

state. It is well known (41 that the coefficients b, in (1.7) obtained from a 
matrix W(M) for a finite torus give (for the case of nearest-neighbor inter- 
actions) the exact b, for the infinite system through n ~< ( M - - 1 )  for the 
arrangement in Fig. 1A and through n < ~ ( 2 M - 1 )  for arrangement in 
Fig. IB (the coefficients are correct for n up to one minus the number of 
particles required to go around the torus). 

There are many techniques known (4"7) for the calculation of the begin- 
ning b, in (1.7) and hence for obtaining the activity expansion of A~ (or 
2~). Here we give a method for calculating the activity expansion of the 
other eigenvalues. It is based on the fact that all of the eigenvalues can be 
calculated as activity series if one knows the appropriate secular equation 

I W - A I I  = 0  (1.8) 

where I is the identity matrix. As the circumference of the torus is 
increased, W becomes very large and it is difficult to obtain (1.8) as an 



Lattice Gas Activity Series from Secular Equations 787 

explicit finite polynomial in powers of  A and z. For  hard-particle systems 
one can obtain the explicit form o f ( l . 8 )  by using a computer  to expand the 
determinant. We will use this approach to obtain the secular equations for 
the 2D lattice gas of  hard particles with nearest-neighbor exclusion on the 
square lattice. We will then examine the limiting form for the next largest 
eigenvalue as M becomes large. The importance of  knowledge of all of  the 
eigenvalues in determining the size dependence, the interfacial tension, and 
the correlation length for the 2D Ising model is well known, t8-]3) 
Knowledge of  the next largest eigenvalue is of  interest since in the 2D Ising 
model the critical point occurs when the largest eigenvalue and the next 
largest eigenvalue become equal (~4) (degeneracy of  the largest eigenvalue). 
We begin by reviewing the construction of  the matrices W. 

2.  S Y M M E T R Y - R E D U C E D  T R A N S F E R  M A T R I C E S  

As a specific example, we consider the 2D lattice gas with nearest- 
neighbor exclusion on the square lattice. For  the correlation of  columns of 
lattice sites with periodic boundary  conditions (giving rings of sites) as 
illustrated in Fig. 1A, Runnels and Combs ~61 have discussed the construc- 
tion of  the matrices W in detail. The size of  W as a function of M (the 
number  of  lattice sites in a ring) is shown in Table I. Runnels and Combs 
have shown that one need not  consider all rotations of  the various ring 
configurations with respect to one another as separate matrix elements, but 
rather a matrix element contains the sum of all possible rotations of  one 
member of  the irreducible set or ring configurations with respect to another 
member. This is the symmetry-reduced transfer matrix. 

Table I. Matrix Size as a Function of Torus Circumference M for the Two 
Lattice Orientations Shown in Fig. 1 ~ 

Orientation A Orientation B 
n through which 

M Matrix size b, is exact M Matrix size tr(M) 

4 3x3 3 2 3x3 2 
6 5x5 5 3 4x4 3 
8 8x8 7 4 6x6 4 

10 14x14 9 5 8x8 5 
12 26x26 11 6 13x 13 7 
14 4"9 x 49 13 7 18x 18 9 

"The quantity tT(M) is the order of the minimum secular equation as discussed with respect 
to Eq. (2.4). 
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0 

0 0 

(1) 

The 4 • 4 matrix W is then 

For the present model one can make a further reduction in matrix size 
by tilting the square lattice by 45 ~ and redefining the columns as shown in 
Fig. 1B. In Fig. 1 A, M particles are required to go around the torus, while 
in Fig. 1B, 2M particles are required (even though the number of sites in 
a volume is M). The size of W as a function of M for the tilted configura- 
tion is also shown in Table I. The matrix sizes for the two orientations of 
the lattice can be compared by observing the number of exact b, that can 
be extracted from a given matrix (n = M -  1 for Fig. 1A and n = 1M--  1 for 
Fig. IB); this is shown in Table I. 

As an example, consider the case of M =  3 for the orientation in 
Fig. lB. The irreducible set of ring configurations has four members (a "1" 
indicates an occupied lattice site, while a "0" an unoccupied site) 

0 0 1 

0 1 1 1 1 1 (2.1) 

(2) (3) (4) 

1 2 3 4 

2 z 0 
W = 3  0 0 

4 0 0 

(2.2) 

A[AS-(l+z) A2-(2z+3z2+zS)A+(3zS+z4)]=O (2.3) 

One eigenvalue is zero and clearly all of the thermodynamic information 
about the system is contained in the cubic equation in square brackets; we 
will refer to the expression in brackets as the minimum secular equation. 
For the present example one observes that the bottom two rows of the 
matrix are identical and the matrix can be contracted to the following 3 x 3 
matrix: 

1 2 3/4 

W = 2  z 0 

3/4 0 0 

(2.4) 

where the (i, j )  element gives all rotations of ring j relative to ring i with 
the number of z factors reflecting the number of particles in ring j. The 
secular equation for this matrix is 
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the secular equation of which is the cubic polynomial given in (2.3). The 
order of the minimum secular equation (for the orientation of Fig. 1B) as 
a function of M is shown in Table I; this is tr(M) as used in (1.2). 

3. COMPUTER GENERATION OF SECULAR EQUATIONS 

Given W(z) as constructed in the previous section, one obtains the 
secular equation by expanding the determinant (1.8). This is easily accom- 
plished using a computer. One programs the a! permutations and simply 
collects the number of terms corresponding to i factors z and j factors A. 
The secular equation is then the double, finite polynomial in z and A 

~. yi.jz~AJ=O (3.1) 
i , j  

The coefficients y~.j are integers (not necessarily positive). One can alter- 
natively write (3.1) in the form 

L C.(z) A " - "  = 0 (3.2) 
n = O  

where C,(z) are finite polynomials in the activity (these polynomials are 
also functions of M). 

For the lattice gas with nearest-neighbor exclusion on the square 
lattice we have obtained the following explicit minimum secular equations 
for M =  2-7 (for the orientation in Fig.lB): 

M = 2 :  

A 2 - A - ( 2 z + z  2 )=0  (3.3a) 

M = 3 :  

A 3 - ( l + z )  A Z - ( 2 z + 3 z 2 + z 3 ) A + ( 3 z 3 + z 4 ) = O  (3.3b) 

M = 4 :  

A 4 - (  l + 2z) A3--( 2z + 6z2 + 5z3 + z4) AZ + ( 5z3 + 8za + 2zS) A 

+ (2z 5 + 4Z 6 q- Z 7) = 0 (3.3C) 

M = 5 :  

A5--(I  + 3z + z2) A 4 - ( 2 z  + 9z2 + 12z3 +6z4 + zS) A 3 

+ (7z 3 -~ 26z 4 + 26z s + 926 + z 7) A 2 

+ ( - -zS+9z6+I5zV+7ZS+Z9)  A- - (5ZS+10Z9+6Z]~  

(3.3d) 
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M = 6 :  

A 7 - ( 1  

-t- 

M = 7 :  

A 9 - ( 1  

-t- 

"1" 

"1" 

"t- 

"t- 

-t- 

-t- 

-t- 

+ 4z  + 3 -2 )  A 6 - ( 2z  + 12z 2 + 2323 + 2 0 z "  + 8z 5 + z 6) A 5 

+ (97. 3 + 55z4  + 107z  5 + 8026 "1" 26Z 7 + 3Z s) A "  

1. ( - -625  - -  82. 6 .1. 357. 7 -t- 79z  8 + 58z  9 + 18z I~ + 2:11 ) A 3 

- ( 2 -  -7 .1. 427. 8 + 140= 9 -t- 188z  1~ + 120z  11 + 36z  12 + 4= 1~) A 2 

- ( 8 z l ~  11 + 16z 12 

+ 13z 13 + 152.14,1, 7215 .1.1.,716) A 

(4 z  13 "1" 24z  14 + 41Z 15 + 29Z 16 + 9z  17 "1" 7.18) = 0 (3 .3e )  

+ 5Z + 6Z 2 + Z 3) A 8 - -  ( 2z  + 15z 2 + 38z  3 + 46  -4 + 30z  5 + 9z  6 + : 7 )  A7 

( 1 l z  3 + 95,z 4 + 2 8 8 z  5 .1. 3 8 6 z  5 + 2 5 3 z  6 + 87z  8 + 1529 .1. glo)  A 6 

( - 13z 5 - 76z  6 - -  112z  7 + 62z  8 + 2 8 3 z  9 + 2 6 1 z  I~ 

113z 11 + 24z  12 + 27` 13) A 5 

(z "7 .1. 88,7 s .1. 58629 .1. 1600z  1~ + 2 2 6 8 z  11 + 1823z  Iz 

861 :13  + 2 3 5 z  14 + 34z  15 + 2z  16) A "  

( - z  1~ _ 18z 11 + 66z  12 + 3 3 4 z  13 + 4 2 5 z 1 4 -  t- 182z t5 

20g  16 - 39:17 - 1 l z  18 - z 19) A 3 

( 2 4 z  13 + 2 0 7 z  14 + 8 3 7 z  15 + 1753z  16 + 2 0 3 0 z  17 + 1359z  Is 

5 4 1 z  19 4- 128z  2~ + 17z 21 + z 22) A 2 

(2216 .1. 862 "17 .1. 3 3 4 z  18 + 538.,319 .1. 4 6 0 z  2~ 

2 3 4 z  21 + 73z  22 + 13z z3 + z 24) A 

( 14z 2~ + 9 1 z  21 + 2 2 4 z  22 + 2 7 5 z  23 "1" 184z  24 -t- 687. 25 + 13z 26 -t- z 27) = 0 

(3 .3 f )  

4. ACTIVITY S E R I E S  FOR T H E  E I G E N V A L U E S  

W r i t i n g  t h e  g e n e r a l  Ak as  a n  i n f i n i t e  se r i e s  in  t h e  a c t i v i t y  

Ak = Aot, + A ikZ + AEk z2 + "'" (4 .1 )  

w e  o b t a i n  t h a t  t h e  s e c u l a r  e q u a t i o n  (3 .2 )  is a r e c u r s i o n  r e l a t i o n  fo r  t h e  

c o e f f i c i e n t s  Ajk fo r  t h e  a e i g e n v a l u e s .  F o r  t h e  p o l y n o m i a l s  (3 .3 )  t h e  r e c u r -  
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sion process begins in general  (for all M )  as follows. The a Aok are given 
as solut ions of 

Aok"- l(Aok --  1 ) = 0 (4.2) 

One solut ion is Aol = 1, while there are a - 1  solut ions Aok = 0 .  Fo r  the 
a -  1 solut ions with A Ok = 0 one finds 

Atk ~ -  2(A lk + 2) = 0 (4.3) 

There is one solut ion A ~k = --2 and a - 2  other  solut ions A t, = 0. 
F o r  the other  Ajk one finds more  compl ica ted  polynomials .  Fo r  

example,  for Aok = Atk = 0 the equat ions  for A2, are 

( M = 3 )  - - 2 A 2 k + 3  = 0  

( M = 4 )  - 2 A ~ ,  + 5 A 2 k + 2  = 0  

( M = 5 )  A2~.(-2A~.+7A2k-1)=O (4.4) 

( M = 6 )  A~,(--2A~k+9A2,k--6A2k--2)=O 
( M = 7 )  A2,(4 _ 2 A ~  k + l l a 2 k - -  13hz,  - l ) =  0 

Fo r  the case of  Aok = A~k = A2k = 0, the equat ions for A3k a r e  

( M = 5 )  --A3k--5 = 0  

( M = 6 )  --2A32k-- 8A3k + 4 = 0 (4.5) 

( M = 7 )  A 3 , ( - A ~ ,  2 
- A 3k + 24A 3k - 2) = 0 

Final ly,  for Aok=A~k=A2k=A3k=O one has for A4k 

( M = 7 )  - -A4k- -  1 4 = 0  (4.6) 

F r o m  (4.2) one sees that  one eigenvalue (the largest)  begins with 
Aot = 1; all the rest have Aok = 0 and thus the series for most  of  the eigen- 
values begins with some integer power  of  the activity (and hence all the 
eigenvalues except the first go to zero as z---, 0). 

As an example,  the beginning terms in the eigenvalues for M = 2 and 
M = 3 are 

Al  = 1 + 2 z - -  3z2 + . . .  
( m = 2 )  (4.7) 

A2 = - 2z + 32 .2 + - - -  

A t = l + 3 z - 3 z 2 + " '  

( M = 3 )  A 2 =  - 2 z + 1 � 8 9  (4.8) 

A 3 =  1�89 -.f - . . .  
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For M =  7 there are nine eigenvalues that have the following beginning 
form: 

A~ = 1 + A l l z  + . . .  

A 2 =  A217. + . . .  

h 3 = a 3 2 z  2 + - - -  

A 4 = A42 z2 + . . .  

A s = A52 z z  + . . .  

A 6 ---- A 6 3 z  3 + . . .  

A 7 = A 7 3 z  3 + , . .  

A s = A83 Z'3 -]-- . . .  

A 9 = A94  z4  + . - -  

(4.9) 

5. THE LARGEST E I G E N V A L U E  

From (1.7) we have 

2 I = e x p  b . :  = 1 +  a . z  ~ (5.1) 
n 1 n = l  

As we have seen in the previous section, only the expansion for the largest 
eigenvalue begins with one. For n ~ < 2 M - 1  the coefficients b. (or alter- 
natively the a .)  in (5.1) are independent of M and are the exact coefficients 
for an infinite lattice. Thus from the secular equation for M = 7 for the 
model of nearest-neighbor exclusion on the square lattice [see (3.3)] one 
obtains the exact b. for the infinite lattice through n = 13. The values so 
obtained are shown in Table II. The b. for this model are known ~ through 
n = 15 as a by-product of the series for the 2D Ising model, and the values 
given in Table II  agree with these numbers. 

As an illustration of the fact that one gets the b. exact for n ~< 2 M -  l, 
we give the first four n. for M =  2 (in this case we can solve the quadratic 
secular equation and obtains the series as an expansion of the square-root 
term): 

p / k T =  z -  2�89 2 + 10�89 -3 - 50-]z 4 + --- (5.2) 

which on comparison with Table II is correct through b3, but b 4 is slightly 
different. 

Given the expansion for A t using (1.4) and (5.1), it is not possible to 
work backward and construct the secular equation. That is, the secular 
equation contains much more information than just the coefficients b,. 
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Table II. The Coefficients b .  for the 2D 
Lattice Gas with Nearest-Neighbor Exclusion 

on the Square Lattice as Obtained from 
the Secular Equation (3.3f) for M = 7  ~ 

n b. 

1 1 
2 --2(1/2) 
3 10(1/3) 
4 --52(I/4) 
5 295(1/5) 
6 -1789(5/6) 
7 11,397(1/7) 
8 -75,238(1/8) 
9 510,609(4/9) 

10 --3,541,971 
11 25,009,987 
12 --179,211,452(11/12) 
13 1,300,139,553(1/13) 

a The coefficients are exact for the infinite lattice. 

6. H I G H - D E N S I T Y  S E R I E S  

On a strip with M x L sites for the present model with nearest- 
neighbor exclusion one can place a maximum of (M x L)/2 particles (every 
other site occupied). At the close-packed density the grand partition 
function is 

�9 ~ ' -  z M L / 2  ~N]2 . . . .  (6.1) 

Taking the limit of  close-packed density of (6.1) as a reference, one can 
construct S as a series in inverse powers of  z, a factor z-~ reflecting the 
removal of  a particle to produce a hole. One has [compare  (1.1), which 
gives an expansion about  the low-density limit] 

where the Q', are the combinatorial  factors giving the 
arrangements of  N / 2 -  n particles on a lattice of  N sites. For  finite N the 
quantities Q', i~a (6.2) are finite numbers. Forming p/kT from (6.2), one 
finds 

p 1 In z = ~  Q] + ~  Q2 Q'l) 2 - ~ (  + . . . - f ( z )  (6.3) 
k - ~ - ~  

(6.2) 

number  of  
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Whether or not the series expansion o f f ( z )  in inverse integer powers of z 
exists depends on whether or not the limits such as 

lim ( l /N) Q'I (6.4) 
N ~ c o  

are finite. If the quantity in (6.4) is not finite, then f ( z )  is not analytic in 
(l/z) about 1/z = 0 (the close-packed limit). For hard-particle lattice gases 
in one dimension, Lee and Yang ~5) have given the general form of Q',, for 
a particle that spans m lattice sites: 

( N -  mn + n)! 
Q: , -  (6.5) 

(N-ran) !  n! 

For the simplest case of m = l  [independent particles: 3 = ( l + z ) U =  
l + N z + . . . ]  we have 

Q~ = N  (6.6) 

and Q'JN = 1 and hence the series is analytic in 1/z. For m = 2 (the case of 
nearest-neighbor exclusion in 1D) one has 

N N 2 
Q'~ = ~- + --~- (6.7) 

In this case Q'I/N is not finite as N--,  ~ and hence f ( z )  is not analytic in 
1/z. 

One can see what is going on in the above case by examining the 
secular equation for the case of M =  1 in (3.3). To construct the high-den- 
sity version o f p / k T  from the secular equations we recall that the eigenvalue 
is for a column of M sites (see Fig. IB). To alter the secular equation to 
give a series relative to the close=packed limit of (6.1), we introduce the 
following scaled variable (at close-packing every other column will be 
occupied; hence there is an average of M/2 particles per column) 

A'l = z -M/2A! (6.8) 

In the limit of large L, ~ is given in terms of the largest eigenvalue A't' 

= ,Z ML/2(A, 1 )L (6.9) 

where 

A'I =Ao+AI/27 . - l /2+A17.  -I  + A 3 / 2 z - 3 / 2 + A 2 2 - 2 +  "" (6.10) 
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where we have indicated that it is possible that fractional inverse powers of  
z might arise. For  the current model one has Ao = 1 in all cases (this is not 
so for the case of  dimers treated in Section 10). 

The equation of  state can then be written as ct6~ 

p / k T  = �89 z + M -  ~ In A't 

= ~ l n z +  b,,z + e,,z (6.11) 
n= 1 ;'1= ( 

where we have separately grouped the terms involving inverse integer 
multiples of z and those involving the square root  of  z. It is known (4"~6~ 
that in the limit M--* oo the function f ( z )  of (6.3) is analytic in 1/z, and 
hence in the limit of large M the coefficients c,, of (6.11) must go to zero. 

For  M odd, there will be square-root terms. The origin of the square- 
root terms for finite M is that  when one has a torus, removal of M particles 
from a column can result in major  rearrangements of  the lattice (for 
example, movement  of  all the particles to the other sublattice), rearrange- 
ments that are impossible in the limit of  M ~  oo. This is illustrated by 
returning to the case of  M = 1. F rom (3.3) with the definition of  (6.8) one 
finds 

giving 

A ' l = � 8 9 1 8 8 1 8 9  . . .  (6.12) 

p / k T =  �89 z +  �89 -1/2+0.0z  -1 + .. .  (6.13) 

We illustrate below the high-density activity series for M = 1 through 
M =  7. We give the series up to the first term that departs from the series 
for the infinite system. The exact series for the infinite system, as obtained 
by other means, 14'161 is shown for comparison. 

(M=I) 

(M=2) 

(M=3) 

(M=4) 

(M=5) 

(M=6) 

(M=7) 

( M = ~ )  

p/kT= ~ ln z + �89 + ... 

p / kT=~lnz+  + ~ z - a + . . .  

p/kT=�89 + �89 + ~z-~/" + ... 

p/kT=�89 +�89 -~z -2+ ... 

p / kT=~lnz+  +�89 

p / kT=~lnz+  +�89 

p / k T = ~ l n : +  +�89 

p/kT=�89 +�89 + 

(6.14) 
- �88 + ~ z  -5/2 + ... 

_�88 + ~z-3+ ... 

I - 2  2 Z - 3  

- �88 +~z-3+ ... 
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One notes that the terms involving the square root of z in the odd terms 
has the form as a function of M as follows: 

1 
- - z  -M/2 (6.15) 
2M 

so the coefficient goes to zero at large M and the position of the term in 
the series also moves out to infinity. 

From (6.14) one sees that the equations of state for finite tori slowly 
converge to the equation of state for the infinite-circumference system. 

7. THE GENERAL FORM OF THE SECULAR 
EQUATION 

We divide both sides of (3.2) by A a and obtain 

~ C, (M,  z)/A" = 1 
n ~ l  

(7.1) 

Using the general expansion of Ak given in (4.1), one obtains the 
following general expansions for A1 and A2: 

A,  = 1 + M z - ( 2 � 8 9 1 8 9  2) z 2+ ... 
(7.3) 

A2 = - 2 z [ 1 - ( a 3 - - M ) z + ( 1 9 - ~ - 6 ~ M +  ~ 2 . ~M ) - 2 + . . . ]  

We define 

Al =exp (MFi )  

A2 = --2z exp(MF2) 
(7.4) 

Then one finds 

I'1 = z - 2 � 8 9  2+ ... 

I , .~ 13 2 F z = ( Z - 2 � 8 9 1 8 8  + . . . )  
(7.5) 

Using the secular equations given in (3.3), one has enough information to 
write the beginning terms of (7.1) as general functions of M. One finds the 
following general forms (valid for M~> 4): 

Ct = 1 + ( M - 2 )  z + ( 6 - 3 � 8 9 1 8 9  2) z 2+ .. .  

C 2 = 2 z  + 3 ( M - - 2 )  z2 + ( 1 7 - 1 1 M  + 2M2) z3 + . . .  
(7.2) 

C 3 = ( 3 - 2 M )  z 3 + ( - 4 6 +  31 �89189 2) z 4+ ... 

C 4 = ( 6 - 6 M + M  2) z 5+ -.. 
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One notes that F~ is independent of M and that F 2 has the following 
specific M dependence: 

F 2 = F I + M - l y E  (7.6) 

where 

From (7.6) one has 

7 2 = - 3 3 z +  13 2 12~z + .-. (7.7) 

lim Ft = F 2  (7.8) 
M~oc,  

One obtains the quantities F~ and 72 independent of M for the infinite 
system. 

8. CALCULATION OF T H E R M O D Y N A M I C  FUNCTIONS 

Given the secular equation for an M x L torus, one can evaluate 
exactly all of the thermodynamic functions in the limit L ~ Go, the only 
numerical task being the calculation of A~, the largest eigenvalue (i.e., one 
must obtain the largest root of the secular equation). For convenience we 
write the secular equation (3.2) in the form 

c , , ( z )  A" = 0 (8.1) 
n = 0  

where 

C . . . .  =c,, (8.2) 

We numerically calculate the largest root, A l ,  of (8.1). Then by implicit 
differentiation of (8.)) we obtain the following relations for the derivatives 
of A,. We define 

s, = E c'.Ai S5 = ~ n ( n -  1) c.A'~ - 2 

s2=E .e .A';- '  S6=Y, c 'A7 

s.,=Y, c;iA'; s7=Y, nc,'iaT-' (8.3) 

S 4 =  E rlc:,An1-1 38~-- E n (n - -  l )  CnA . . . .  I 2 

S9 = ~ n(n - 1 )(n - 2) c,A 7-3 

822/77/3-4-t9 
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where the prime indicates differentiation with respect to z. The first three 
derivatives of A with respect to - are then given by 

0A l S] 

Oz S2 

02A ] $3 + 2S4 + $5 
0-  -2 S 2 

03A t 3S4 + 3Ss + S 6 -~- 3S7 + 3Ss + S9 
0z 3 S2 

(8.4) 

The pressure, the density p, the isothermal compressibility KT, 
modified compressibility X, and the derivative of X are then obtained using 
standard thermodynamic relations: 

P = M  - l  lnAl  
k T  

O(p/kT) M _ I D  1 
P =  O l n z  

10p X 
K r -  (8.5) 

p Op kTp  2 

o__L_p 
X = 0 In z = (p - Mp2) + M -  ID 2 

OX 

O l n z  
- .7(( 1 - 2Mp)  + M-1(2D2 -- Di D2 + D3) 

where 

=(._-)oA, 
Dl \ A , J  Oz 

D 2 = \ 7 , / - g ? c  

D ,  = \ - Z , /  

(8.6) 

Figure 4 shows the modified compressibility X as a function of p for 
various values of M calculated using the secular equations (3.3) for the 
model of nearest-neighbor exclusion and the procedure outlined above. For 
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0 . 1 5  

/ / ~ "  \ \  ~1 / 

// ', 
I~ \~I 

0.00 0.25 0.5 

X 

P 

Fig. 4. The modified compressibility X as a function of density for M x oo lattice strips. The 
compressibility is calculated using the exact secular equations of (3.3) and the appropriate 
relation given in (8.5). The numbers 2-7 refer to the Mvalues for the 2D lattice gas with 
nearest-neighbor exclusion. The number 1 refers to the I D lattice gas with nearest-neighbor 
exclusion; the secular equation for this system is given in (8.7). As M--, oo the maximum in 
X develops into the singularity of (8.8) at approximately p,.= 0.37. 

c o m p a r i s o n  we also s h o w  X(p) for the 1D lat t ice gas  wi th  nea re s t -ne ighbor  
exclusion.  The  secular  e q u a t i o n  for the 1D m o d e l  is 

A Z - A - z = O  (8.7) 

As shown prev ious ly  by Runne l s  and  C o m b s ,  c61 as M is increased,  a sharp  

m a x i m u m  in X deve lops  near  p c = 0 . 3 7 .  In the l imit  M ~  oo, X has a 
s ingular i ty  o f  the  fo rm ~6"~7~ 

X ~  - l n ( p  -p,.) (8.8) 

This  is a s econd -o rde r  t r ans i t ion  that  reflects the subla t t ice  o rde r ing  that  

begins  to set in at Pc as the densi ty  is increased.  
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9. THE RATIO AflA1 

We can factor out the largest eigenvalue in (1.2) and obtain 

Z = A ;  [1 (A2~L+ + \~-~ / . . . ]  (9.1) 

We use the general M dependence for A1 and A 2 given in (7.3) and (7.4) 
and find that the ratio of  the eigenvalues is independent of M 

. . .  ~ ~n Az/A 1 -- --2z(1 - 3 ~ z +  19~z2 + ) =  e,,~. (9.2) 
n= |  

One finds that one obtains the en for the infinite system through n ~< M -  1; 
this is illustrated in Table III. As discussed in the Introduction,  the quan- 
tity L must be even. Thus even though, as seen from (9.2), the ratio of 
the eigenvalues is negative, it will be raised to an even power. Thus we 
introduce the positive quanti ty 

r= -A2/AI (9.3) 

Using the secular equation for M = 7 of  (3.3f), we thus can calculate the 
exact ~, for the infinite system through n = 6. The series is (we quote the 
fractions to four significant figures) 

r = 2z( 1 - 343-z + 1 9 ~ z  2 -- 114.9062z 3 + 731.4180z 4 - 4882.9586z s + --. ) 

(m>~7)  (9.4) 

The ratios of successive coefficients in (9.4) extrapolate smoothly to 

Table III. The Coefficients in the Activity Expansion of Az/A1 as a Function 
of M,  the Circumference of the Lattice Torus" 

n M=2 M=3 M=4 M=5 M=6 M=7 

1 ! ! ! ! 
2 --3.5 --3.75 -3.75 -3.75 
3 16 19(5/16) 19(7/16) 19(7/16) 
4 --111.8125 -114.843 --114.906 
5 729.293 731.387 
6 

! ! 
-3.75 -3.75 

19(7/16) 19(7/16) 
-114.906 -114.906 

731.418 731.418 
-4889.443 -4882.959 

~ The quantities shown are the coefficients a, of (9.2) divided by minus two. The underlined 
numbers are the limiting values for the infinite system. 
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z = - 0 . 1 2 ,  which  is also (16) the rad ius  of  convergence  of  the pressure  series 

(1.7). 
We can  express (9.3) as a densi ty  series us ing  the expans ion  (t6) 

p = z - 5z 2 + 31z 3 - 209z 4 + 1476z 5 - 10739z 6 + "-" (9.5) 

We  o b t a i n  

r =  2p + 2�89 + l T p 3 - 1 . 1 8 7 5 p 4 -  7 . 9 1 4 1 p S - 1 4 . 1 4 8 4 p 6  + . . .  (9.6) 

Both  (9.4) a n d  (9.6) give wel l -behaved  series if they are inverted:  

Z = l r  + 15_2 - -  r~r -1- (1.085938) r 3 + (0.8828092) r 4 + (0.4949532) r s 

+ (0.1255641) r 6 + . . .  (9.7) 

p = �89 - ~ r  2 + (0.2734375) r 3 - (0.2070313) r 4 + (0.1737067) r s 

- (0.165576) r 6 + . .-  (9.8) 

At r = 1, (3/4) a n d  (4/3) Pad6  a p p r o x i m a n t s  give z = 3.74 and  z = 3.42. At 
r =  1, (3/4) a n d  (4/3) a p p r o x i m a n t s  give p = 0 . 3 4 9  and  p = 0 . 3 4 6 .  These 
compare  with the phase  t r ans i t ion  quant i t i es  (~2''3) of  z = 3.75 and  p = 0.37. 

10. DIMERS; S U M M A R Y  

The  combina to r i c s  of  p lac ing  d imers  on  a lattice is a classic p rob l em  
in statist ical  mechanics ;  we cons ider  the case of  the p lane - square  lattice 
w r apped  in to  an  M x L torus  as i l lustrated in Fig. lB. The  p lac ing  of  a 
d imer  on  the to rus  is i l lus t ra ted in Fig. 5A; each d imer  has  two possible  
o r i en ta t ions  as i l lus t ra ted in Fig. 5B. The  cons t ruc t i on  of  the t runca t ed  
mat r ix  for M =  2 is i l lus t ra ted in Fig. 5C. P roceed ing  as before, we o b t a i n  
the secular  equa t i o n s  for M = 1 to M = 5: 

( M = I )  A E - A - - 2 z = O  

( M = 2 )  A 3 - ( 1  + 2 z )  ~ ' t 2 - - ( 2 z + 2 z  2) A + 4 z 3 = 0  

( M  = 3) A 4 - ( 1 + 4z) A 3 - (2z + 9z 2 + 8z 3) A 2 + (623 + 8z 4) A + 12z 6 = 0 

( M = 4 )  A 6 - ( l + 6 z + 4 z 2 )  A S - - ( 2 z + 1 6 z 2 + 3 2 z 3 + 8 z 4 ) A  4 

"t- (Sz  3 + 5024 "l" 88Z 5 + 40Z 6) A 3 - -  (425 + 4z 8) A 2 

- ( 16z s + 24Z 9 + 64z l~ A + 32z 12 = 0 ( 10.1 ) 
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( M = 5 )  A 8 - ( 1 + 8z + 12z 2) A 7 - -  (2z + 23z 2 + 80z 3 + 90Z 4 q- 32Z 5) A 6 

+ ( 10z 3 + 115z 4 -I- 430z 5 + 572z 6 -I- 184z 7) A 5 

+ ( - 10z 5 --  76z 6 - 160z 7 + 105z 8 + 576.z 9 + 2807,1~ A n 

- -  (607. 8 + 446Z 9 + 1340Z I~ + 1672Z 11 + 720Z 12) A 3 

-- (40z II + 100z 12 + 320z 13 + 329z 14 + 640z 15) A 2 

+ (200z 15 + 320z 16 + 800z 17) A + 4 0 0 z  2~ = 0 

As with the case of part icles with nea res t -ne ighbor  exclusion 
considered  previously ,  the n u m b e r  of  d imers  at c lose-packing  is N/2 (where 
N =  M • L is the tota l  n u m b e r  of  lat t ice sites). Un l ike  the previous  p r o b l e m  
where all of  the part icles mus t  exist on  one  subla t t ice  ( i l lus t ra ted in Fig. 3), 
there are m a n y  ways to a r range  the dimers  at c lose-packing ( i l lus t ra ted in 
Fig. 6A). If q) is the n u m b e r  of  a r r a n g e m e n t s  of N/2 dimers  on  N sites at 
c lose-packing,  one  has for large N 

q) = ~b N/2 (10.2) 

,'x 
o 
o 

o o 

I 4z 2z 2 

I 2z 0 

(C) ,..,.. 0 

Fig. 5. Lattice gas of dimers. (A) The placement of a dimer on a lattice strip of type (B) 
illustrated in Fig. 1. (B) The two possible orientations of a dimer. (C) The transfer matrix for 
dimers for a lattice strip with M =  2. The configurations illustrate the possible states of a 
column of two sites (a column as in Fig. IB). The matrix elements are the contribution of 
column i +  1 to the grand partition function. 
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where r is the freedom per dimer at close-packing (one has r = 2 as N--* 0). 
The quantity r is known exactly (~s'~9~ and to five figures is given by 

r  1.7916 (10.3) 

It is known exactly that there is no singularity from zero to close-packed 
density. 

The low-density activity series is known ~2~) through 15 terms; the 
series is also known t22) through 9 terms for the case of  interacting dimers 
on the plane-square lattice. The secular equation for M = 5 gives the low- 
density activity series through n = 9 ( 2 M -  1 ) for the case of  tori of infinite 
circumference. We note that the equilibrium activity series can also be used 
to treat the kinetics of  the adsorption of  dimers onto a 2D lattice. ~23) The 
high-density activity series is of  most interest and we turn to that now. We 
can write the grand partition function as a series in inverse powers of  z 
relative to the close-packed state as follows [in analogy with (6.2)]: 

z = ( _ ) u / 2  + F/j - - ~ +  -.- (10.4) 
L \ i =  1 i I j =  I 

The sum over i represents the sum over each of  the r configurations of 
dimers at close-packing (as illustrated in Fig. 6A). For  each of the i 
configurations we remove each of  the N/2 dimers one at a time (the sum 

(A) 

I:IIiiI 
I I I I 

(B) 

I ZIY I 
____ .....+II iI!::::! 

Fig. 6. (A) Close-packing of dimers on the plane-square lattice. There is no preferred orien- 
tation or sublattice structure. (B) The configuration shown in (A) with one dimer missing 
(dotted line). The arrows indicate a possible rearrangement of the remaining dimers made 
possible by the vacancy. 
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over j ) ,  giving a c lose-packed configurat ion with one dimer  removed 
(i l lustrated in Fig. 6B). The quant i ty  Fv  is the number  of  ways that  one can 
rearrange the remaining part icles when the j t h  part icle is removed from the 
i th configuration. The factor z - I  indicates that  one particle has been 
removed. In t roducing  the average F~ 

i = l  j = l  ~ i = 1  j f f i l  

one has [us ing  (10.2) for ~ ]  

S=(zq~)N/2II+2(F)z-t+-..] 

The equat ion of  state is then 

P 1 l n z + ~ l n r  -l  /--~=~ ~ ( r )  z + . . .  

(lO.5) 

(10.6) 

(10.7) 

As discussed in Section 6, if ( F )  ~ oo as N---, o% then p/kT- In z/2 is not  
analyt ic  about  z -  1 = 0. 

Our  secular equat ions  in (10.1) give us the following beginning terms 
for the equat ion of  state of  (10.7) for M =  1 to M =  5: 

( M = I )  

( M = 2 )  

( M  = 3) 

( M = 4 )  

( M = 5 )  

Firs t  we 

p/kT= 0.5 In z + 0.34657 + 0 .35355z- i / :  + 0 .0z-  l + . . .  

p/kT=0.5 In z + 0.34657 + 0.0z- l /2  + 1.5z - I  + . . .  

p/kT= 0.5 In z + 0.29863 + 0.27217z-~/2 + 0.51389z-J + .-- (10.8) 

p/kT = 0.5 In z + 0.30699 + 0.0z- i /2  + 2.72084z - l + . . .  

p/kT= 0.5 In z + 0.29415 + 0.24060z-  1/2 + 0.83766- - 1 + . . .  

note that  there is an a l tera t ion in the charac ter  of the results 
between M odd and M even. The cons tant  term should be asympoto t i c  to 
the value 

�89 In ~b = �89 ln(1.7916) = 0.29155 (10.9) 

and  one sees that  this is so. 
The question of interest is whether  as M --, ~ the coefficients of  z -  ,/2 

for M odd  go to zero and whether  s imul taneously  the coefficients of  z - t  for 
M odd and M even approach  the same finite limit. I f  this is so, then p/kT 
is analyt ic  abou t  the c lose-packed state in powers  of  z -~. It is not  
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impossible that  this is so, but  we clearly do  not  have enough da ta  
( M  values) to suppor t  this interpretat ion.  

It is of  interest to calculate the ent ropy as a function of density from 
zero up to close-packing.  We have the basic relat ion 

S =  2 ~ = 12(n*, N)  z"" (lO.lO) 

where N is the to ta l  number  of sites (N = M x L),  2 is the largest eigenvalue 
per site ( = A  I/M), and  n* is the number  of  part icles on the lattice that  
cor responds  to the max imum term in 3 (the part icle densi ty is given by 
p=n*/N). Using (10.10), one obta ins  

1 
F i n  I 2 = l n  2 - p i n  z = l n  co (10.11) 

We obta in  2 as the largest root  of  the secular equat ion and p from the 
appropr ia t e  derivat ive as out l ined in Section 8. The quant i ty  In o9 defined 
in (10.11) is shown in Fig. 7 as a function of  densi ty for M =  1 and M = 5 .  
In the limit z --. ~ one has p ~ 1/2 and 

s (b/v/2 (10.12) 

giving 

lim In o9= �89 r (10.13) 
p ~ c ~  

F o r  the case of  M = 5 this limit is very close to the value for the infinite 
system. 

0 . 8 "  

M-I 

In ~o 0.6. ~ M=~5~ 
0.4" 

0.2. 

0.0 
o.o 02, o l ,  oJ~ o14 0.5 

P 

Fig. 7. The configurational entropy per lattice site S/Nk) for the dimer model as a function 
of density p for finite toil with M = l and M = 5. The close-packing limit for the case of M = 5 
is indistinguishable on the scale shown from the value for the case of M = oo. 
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In summary, we have shown that we can obtain the secular equations 
for lattice gas models on tori of  finite circumference by computer expansion 
of the appropriate determinants constructed from symmetry-reduced 
matrices. The secular equations for finite tori yield the exact beginning 
coefficients in various thermodynamic series for the infinite system. The 
number of coefficients that can be obtained in this manner depends on the 
details of the system treated. In our example of the hard-particle lattice gas 
we easily obtained the first 13 exact vitial coefficients. The computer time 
required to expand the secular determinant goes up very fast with the size 
of the matrix and hence the number of coefficients that can be obtained in 
this manner in a reasonable amount of time is in the range of 15-18. In 
addition to giving a set of  exact coefficients for low-and high-density 
expansions, the secular equation gives the exact thermodynamic behavior 
for the finite system. 
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